FAIRCHILD

SEMICONDUCTOR

MM74C175 Quad D-Type Flip-Flop

General Description

The MM74C175 consists of four positive-edge triggered Dtype flip-flops implemented with monolithic CMOS technology. Both are true and complemented outputs from each flip-flop are externally available. All four flip-flops are controlled by a common clock and a common clear. Information at the D-type inputs meeting the set-up time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. The clearing operation, enabled by a negative pulse at Clear input, clears all four Q outputs to logical "0" and Q's to logical "1".

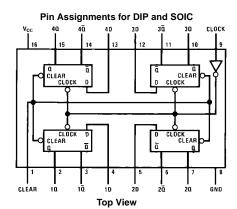
All inputs are protected from static discharge by diode clamps to $\rm V_{\rm CC}$ and GND.

October 1987

Revised January 1999

Features

Truth Table


- Wide supply voltage range: 3V to 15V
- Guaranteed noise margin: 1.0V
- \blacksquare High noise immunity: 0.45 V_{CC} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L

Ordering Code:

Order Number	Package Number	Package Description
MM74C175M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74C175N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

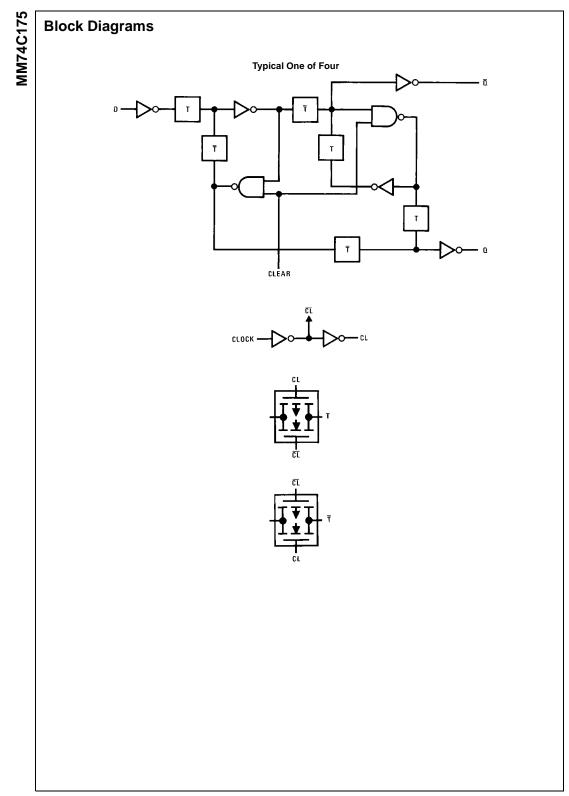
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Inputs			Outputs		
Clear	Clock	D	Q	Q	
L	х	х	L	Н	
Н	Ŷ	н	н	L	
н	Ŷ	L	L	н	
н	н	х	NC	NC	
н	L	х	NC	NC	

Each Flip-Flop

H = HIGH Level


L = LOW Level X = Irrelevant

 \uparrow = Transition from LOW-to-HIGH level

NC = No Change

© 1999 Fairchild Semiconductor Corporation DS005900.prf

www.fairchildsemi.com

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin	–0.3V to V _{CC} +0.3V
Operating Temperature Range	$-40^{\circ}C$ to $+85^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V

Absolute Maximum V_{CC} Lead Temperature (Soldering, 10 seconds)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics table provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise specified

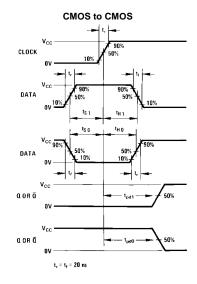
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	смоз		I			1
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8.0			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \ \mu A$	4.5			V
		$V_{CC} = 10V$, $I_{O} = -10 \ \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{O} = 10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = 10 \ \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 15V$		0.05	300	μA
CMOS/LP1	TL INTERFACE	·				
V _{IN(1)}	Logical "1" Input Voltage	74C, V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	74C, V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	74C, $V_{CC} = 4.75V$, $I_O = -360 \ \mu A$	2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	74C, $V_{CC} = 4.75V$, $I_{O} = 360 \ \mu A$			0.4	V
OUTPUT D	RIVE (See Family Characteristics	Data Sheet) (Short Circuit Current)				
ISOURCE	Output Source Current	$V_{CC} = 5V, T_A = 25^{\circ}C,$	-1.75	-3.3		mA
	(P-Channel)	$V_{OUT} = 0V$				
ISOURCE	Output Source Current	$V_{CC} = 10V, T_A = 25^{\circ}C,$	-8.0	-15		mA
	(P-Channel)	$V_{OUT} = 0V$				
I _{SINK}	Output Sink Current	$V_{CC} = 5V, T_A = 25^{\circ}C,$	1.75	3.6		mA
	(N-Channel)	$V_{OUT} = V_{CC}$				
I _{SINK}	Output Sink Current	$V_{CC} = 10V, T_A = 25^{\circ}C,$	8.0	16		mA
	(N-Channel)	$V_{OUT} = V_{CC}$				

MM74C175

18V

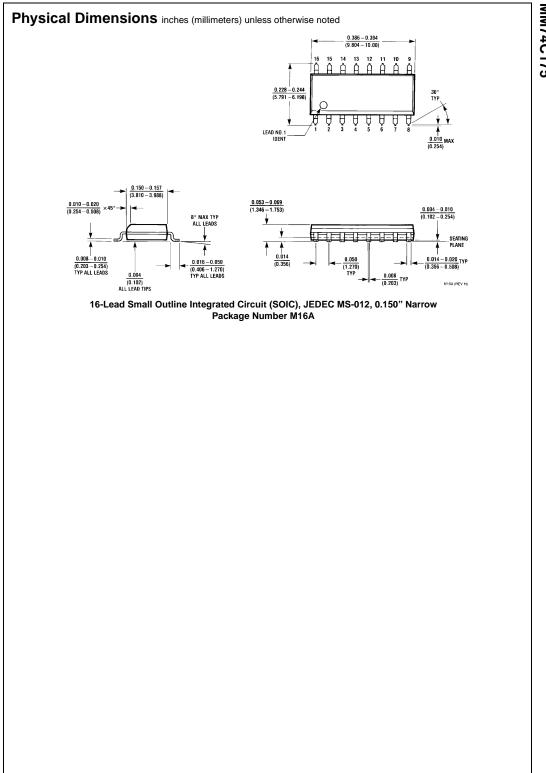
260°C

www.fairchildsemi.com

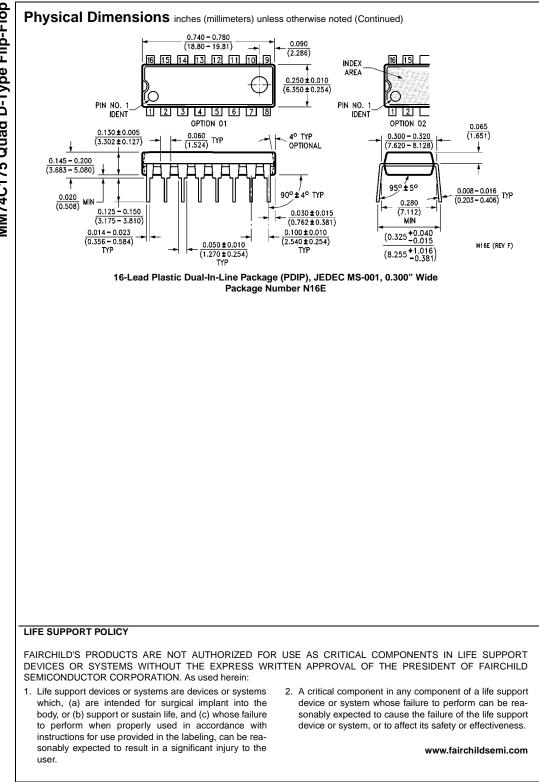

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd}	Propagation Delay Time to	$V_{CC} = 5V$		190	300	ns
20	a Logical "0" or Logical "1" from	$V_{CC} = 10V$		75	110	ns
	Clock to Q or \overline{Q}					
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		180	300	ns
PG	Logical "0" from Clear to Q	$V_{CC} = 10V$		70	110	ns
t _{pd}	Propagation Delay Time to a	$V_{CC} = 5V$		230	400	ns
	Logical "1" from Clear to Q	$V_{CC} = 10V$		90	150	ns
t _S	Time Prior to Clock Pulse that	$V_{CC} = 5V$	100	45		ns
	Data Must be Present	$V_{CC} = 10V$	40	16		ns
t _H	Time After Clock Pulse that	$V_{CC} = 5V$	0	-11		ns
	Data Must be Held	$V_{CC} = 10V$	0	-4		ns
t _W	Minimum Clock Pulse Width	$V_{CC} = 5.0V$		130	250	ns
		$V_{CC} = 10V$		45	100	ns
t _W	Minimum Clear Pulse Width	$V_{CC} = 5.0V$		120	250	ns
		$V_{CC} = 10V$		45	100	ns
t _r	Maximum Clock Rise Time	$V_{CC} = 5V$	15	450		μs
		$V_{CC} = 10V$	5.0	125		μs
t _f	Maximum Clock Fall Time	$V_{CC} = 5V$	15	50		μs
		$V_{CC} = 10V$	5.0	50		μs
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5V$	2.0	3.5		MHz
		$V_{CC} = 10V$	5.0	10		MHz
CIN	Input Capacitance	Clear Input (Note 3)		10	1	pF
		Any Other Input		5.0		pF
CPD	Power Dissipation Capacitance	Per Package (Note 4)		130		pF

Note 2: AC Parameters are guaranteed by DC correlated testing.

Note 3: Capacitance is guaranteed by periodic testing.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90.

Switching Time Waveforms


www.fairchildsemi.com

4

MM74C175

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.